Brain Interaction during Cooperation: Evaluating Local Properties of Multiple-Brain Network

نویسندگان

  • Nicolina Sciaraffa
  • Gianluca Borghini
  • Pietro Aricò
  • Gianluca Di Flumeri
  • Alfredo Colosimo
  • Anastasios Bezerianos
  • Nitish V. Thakor
  • Fabio Babiloni
چکیده

Subjects' interaction is the core of most human activities. This is the reason why a lack of coordination is often the cause of missing goals, more than individual failure. While there are different subjective and objective measures to assess the level of mental effort required by subjects while facing a situation that is getting harder, that is, mental workload, to define an objective measure based on how and if team members are interacting is not so straightforward. In this study, behavioral, subjective and synchronized electroencephalographic data were collected from couples involved in a cooperative task to describe the relationship between task difficulty and team coordination, in the sense of interaction aimed at cooperatively performing the assignment. Multiple-brain connectivity analysis provided information about the whole interacting system. The results showed that averaged local properties of a brain network were affected by task difficulty. In particular, strength changed significantly with task difficulty and clustering coefficients strongly correlated with the workload itself. In particular, a higher workload corresponded to lower clustering values over the central and parietal brain areas. Such results has been interpreted as less efficient organization of the network when the subjects' activities, due to high workload tendencies, were less coordinated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diagnosis of brain tumor using image processing and determination of its type with RVM neural networks

Typically, the diagnosis of a tumor is done through surgical sampling, which is more precise with existing methods. The difference is that this is an aggressive, time consuming and expensive way. In the statistical method, due to the complexity of the brain tissues and the similarity between the cancerous cells and the natural tissues, even a radiologist or an expert physician may also be in er...

متن کامل

Robot control system using SMR signals detection

One of the important issues in designing a brain-computer interface system is to select the type of mental activity to be imagined. In some of these systems, mental activity varies with user intent and action that must be controlled by the brain-computer system, and in a number of other signals, the received signals contain the same activity-related mental activity that should be performed by t...

متن کامل

P27: Brain Network as a Pivotal Part in Intelligence Function

Neuroimaging findings have proposed that some brain regions including the precuneus, posterior cingulate, and medial prefrontal cortex play an essential role of a structural core in the brain. Network organization endures rapid alterations in development with changes in axonal synaptic connectivity, white matter volume, and the thickness of corresponding cortical regions. Structural maturation ...

متن کامل

A Novel Classification Method using Effective Neural Network and Quantitative Magnetization Transfer Imaging of Brain White Matter in Relapsing Remitting Multiple Sclerosis

Background: Quantitative Magnetization Transfer Imaging (QMTI) is often used to quantify the myelin content in multiple sclerosis (MS) lesions and normal appearing brain tissues. Also, automated classifiers such as artificial neural networks (ANNs) can significantly improve the identification and classification processes of MS clinical datasets.Objective: We classified patients with relapsing-r...

متن کامل

Predicting Normal People’s Reaction Time based on Hippocampal Local Efficiency During a Memory-Guided Attention Task

Background: There are some convincing shreds of evidence indicating that memory can direct attention. The local efficiency of an area in the brain, as a quantitative feature in a complex network, indicates how the surrounding nodes can transfer the information when a specific node is omitted. This feature is a scale for measuring efficient integration of information in the brain. Objectives:...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017